How to reduce vascular complications of TAVI

Paul TL Chiam

MBBS (S'pore), MMed, MRCP (UK), FAMS FRCP (Edin), FESC (EU), FACC (USA), FSCAI (USA)

Cardiologist

Mount Elizabeth Hospital Singapore

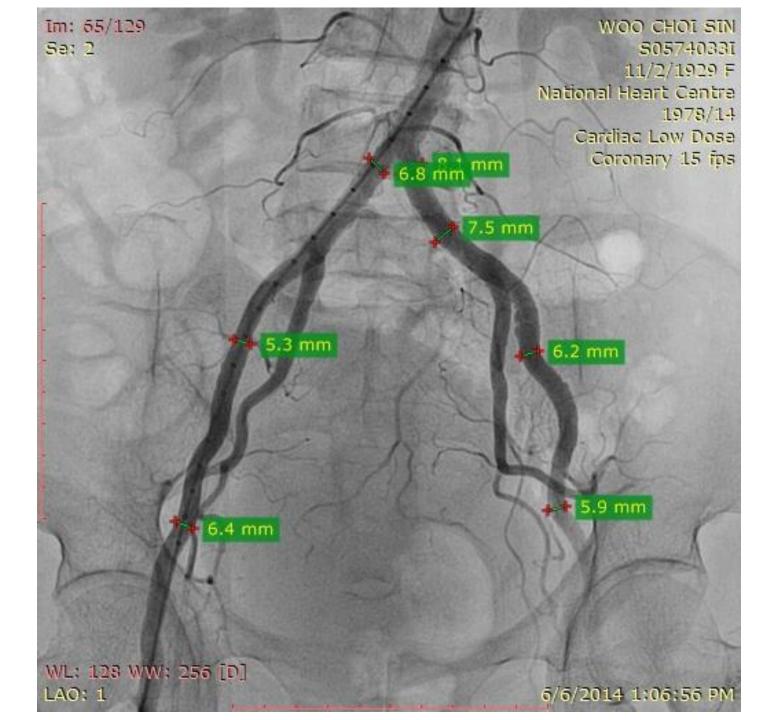
Definition of Vascular complications

- VARC-2 consensus statement
- Any complication caused by:
 - Wire
 - Catheter
 - Anything related to vascular access (including LV perforation and pseudoaneurysm)
- Only major vascular complications are considered important clinical end points

- Why is it important?
- Increased mortality in patients with vascular complications
 OR 2.4 8.5
- Prolonged hospitalization
- Increased procedural costs
- Incidence:
- 2 17% major vascular complications across the literature
 Predominantly transfemoral TAVIs
- Prevention, early recognition and prompt treatment are vital

Toggweiler et al. JACC Intv 2013

Patient selection


- Suitable clinical candidate
- Suitable aortic root anatomy
- Iliac and femoral anatomy

Pre-procedure planning

- Pre-procedure imaging of paramount importance
- Accurate vessel size and calcification assessment critical
- Tortuosity also important to understand but less critical
- Invasive angiography
- CTA (especially with use of centre lines)
- Ultrasonography

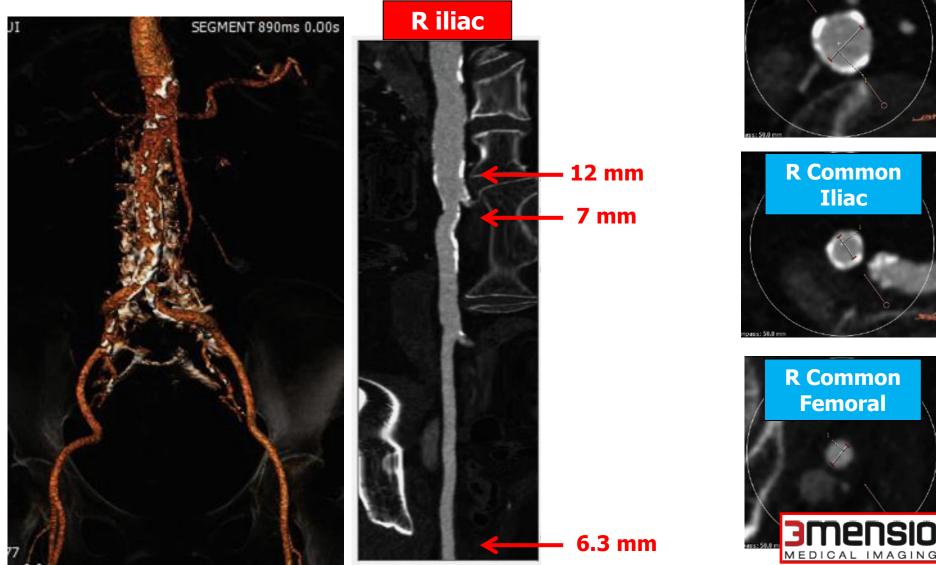
Angiography

- Advantages:
 - Easy to perform (during cardiac catheterization)
 - Lower cost (part of cardiac angiography)
 - Lower contrast load (15 20ml only)
 - Lower radiation dose
- Disadvantages:
 - No 3-dimensional appreciation of vasculature
 - Qualitative assessment of calcification
 - May miss stenosis/ narrowings due to eccentric plaque

CT angiography

- Advantages:
 - Better spatial resolution
 - Enhanced appreciation of vessel size
 - 3-dimensional appreciation of tortuosity
 - Quantitative assessment of calcification
- Disadvantages:
 - Adds cost
 - Increased contrast load (80 100ml)
 - High radiation dose

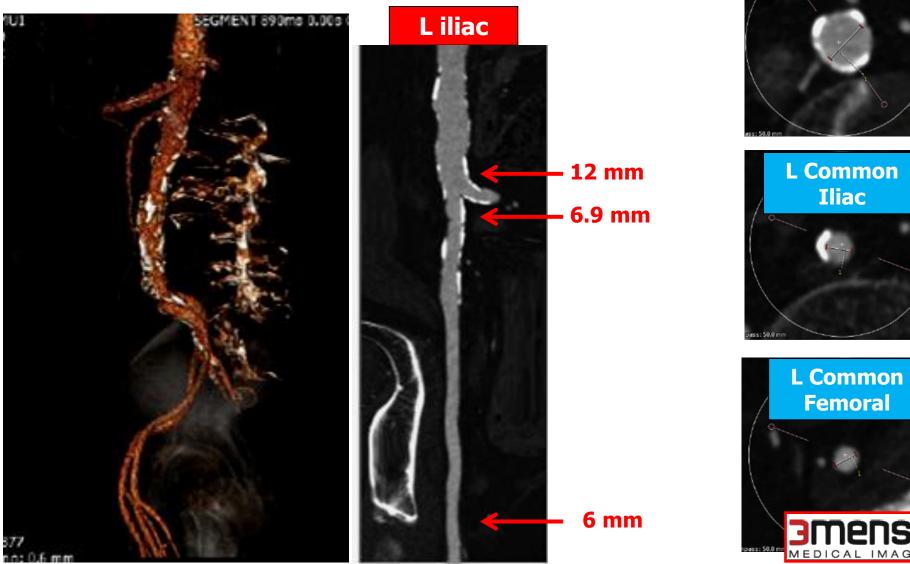
CT angiography

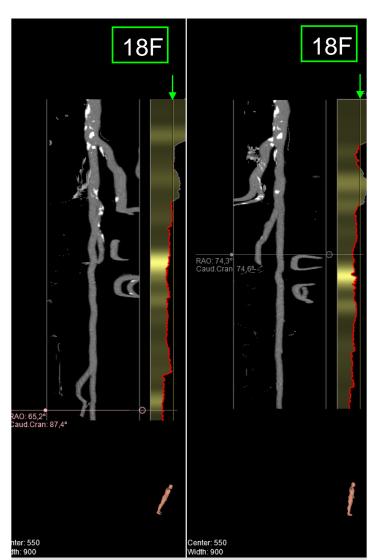

- CTA particularly useful when deploying preclosure devices → helps to assess presence and location of calcium at the CFA
- Also helps to assess for soft unstable plaques and dissections in vasculature

MDCT – Peripheral artery

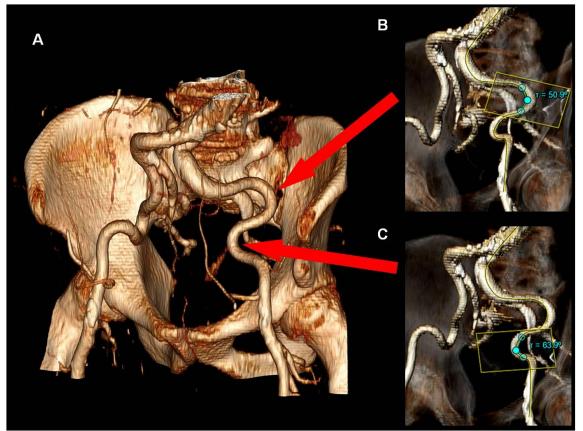
Aorta

Iliac


Minimal diameters & Calcifications



MDCT – Peripheral artery


Aorta

Minimal diameters & Calcifications

- 1. Lumen diameter
- 2. Calcification
- 3. Tortuosity

Complications of the iliofemoral arteries

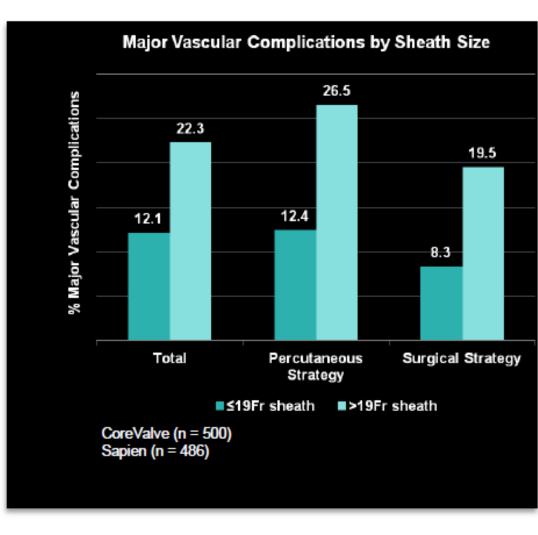
- Predisposing factors:
- Small vessel size
- Moderate-severe calcification
- Centre experience
- Female gender
- Sheath-to-femoral artery ratio (SFAR) > 1.05 → very strong predictor
- Iliofemoral tortuosity NOT a predictor

Toggweiler et al. JACC Intv 2013 Hayashida et al. JACC Intv 2011

Manufacturer	Sheath	Sheath Internal Diameter, F	Sheath External Diameter, mm
Edwards Lifesciences	RetroFlex 3 introducer sheath	22	8.4
		24	9.2
	NovaFlex introducer sheath	18	7.2*
		19	7.5
	Expandable Sheath	14	5.9*
		16	6.6*
		18	7.2*
		20	7.8*
Cook Medical	Check-Flo Introducer	18	7.2
St. Jude Medical	Ultimum	18	6.8
		20	7.6
		22	8.2
Onset Medical	SoloPath Balloon Expandable Transfemoral Introducer	19	7.3†
		20	7.7†
		21	8†
Gore Medical	DrySheath	16	6.2
		18	6.8
		20	7.5

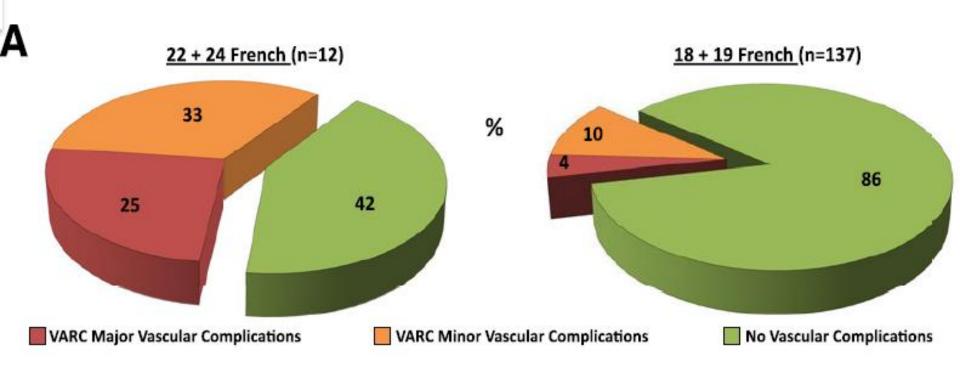
Table 1	Diameters of the eSheath in its unexpanded and expanded state.					
Model	Sheath ID (unexpanded)	Sheath OD (unexpanded)	Sheath OD (expanded)	Loader ID	Compatible NovaFlex+ device	Minimum vessel diameter ^a
916ES23	16F (5.3 mm)	6.7 mm	Up to 8.9 mm	21F	9355NF23 (23 mm THV)	6.0 mm
918ES26	18F (5.9 mm)	7.2 mm	Up to 8.9 mm	21F	9355NF26 (26 mm THV)	6.5 mm
920ES29	20F (6.7 mm)	8.0 mm	Up to 9.9 mm	23F	9355NF29 (29 mm THV)	7.0 mm
	liameter; OD: outer vessel diameter req		nscatheter heart val	ve.		

CoreValve 23mm, 26mm, 29mm, 31mm \rightarrow all pass through 18F St. Jude or Cook sheath


Minimum vessel diameter \geq 6.0mm

Minimum vessel diameter applies to vessels that are relatively free of calcium

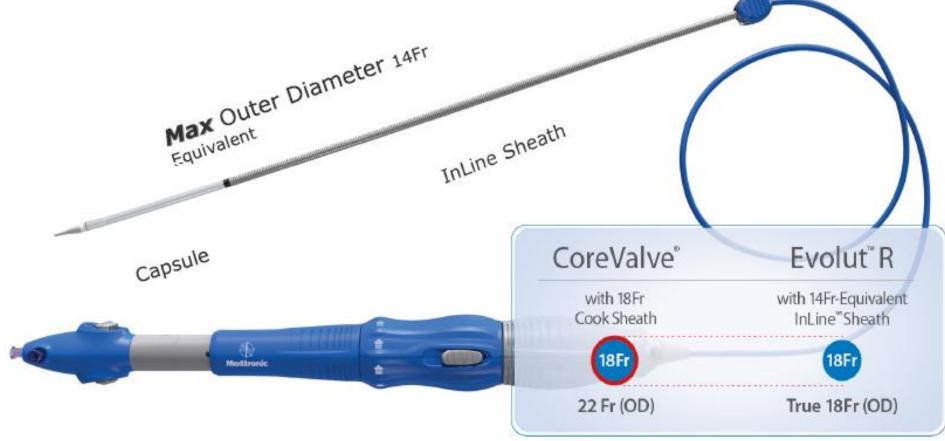
Implications of Sheath Size


Sheath sizes >19Fr lead to more vascular complications

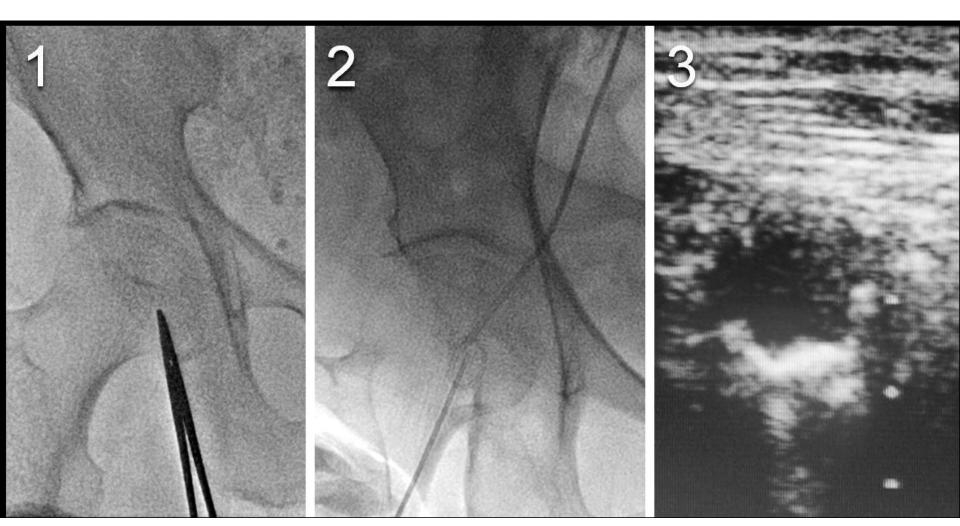
- Patients treated with the >19Fr sheath (ID) had:
- more vascular complications
 - (22% vs 12%, p < 0.001)
- more bailout interventions for accessrelated issues
 - (20% vs 10%, p < 0.001)

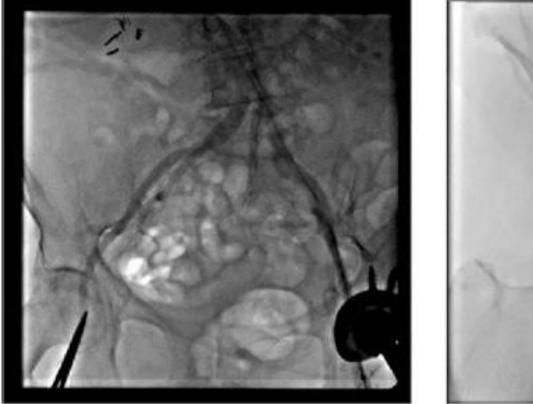
1. Van Mieghem et al. Am Card. 2011.

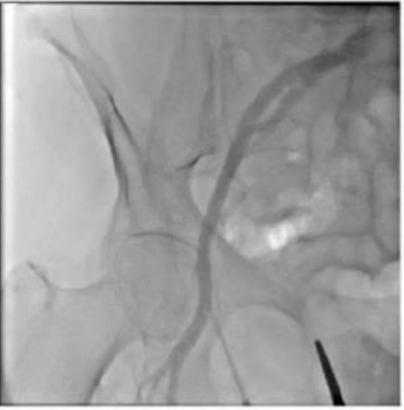
Large vs Small Sheaths Bern experience


Storecky (Bern) JACC Intv 2012

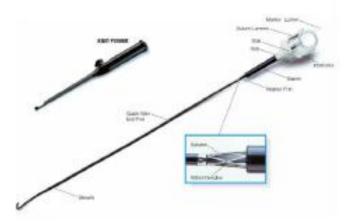
Lower profile devices will reduce vascular complications


Balloon-Expandable THV Generation and Minimum Sheath Diameter


EnVeo R Delivery Catheter 14Fr-Equivalent Delivery Profile with InLine Sheath



Access techniques – a higher standard for percutaneous access



Crossover injection to localize puncuture site

Be familiar with closure devices

	Proglide	Prostar
Size	6F	10F
Easy to learn	yes	no
Devices	2	1
Pretied	yes	no
Needle entrapment	yes	no
Repeatable	yes	not so much

Be ready to deal with complications

- Iliofemoral dissections:
 - Minor dissections can possible be left alone
 - More complex dissections can be treated with
 - Prolonged balloon inflation
 - Stent placement
 - Covered stent
 - Surgical repair

- Iliofemoral rupture:
 - If ipsilateral wire still in-situ, advance the dilator/ sheath immediately to tamponade rupture site
 - Occlusion balloon (eg Coda balloon) from the ipsilateral/ contralateral access to the distal aorta
 - For small perforation, cross over balloon for 10 min may seal leak
 - Covered stent may seal perforation
 - Many cases will require surgical repair

- Stenosis/ thrombosis:
 - Percutaneous closure can result in stenosis of the CFA \rightarrow if severe, balloon inflation can help
 - Thrombosis can be treated with thrombectomy (eg Angiojet), angioplasty or surgical revascularization
- Failed Prostar/ Perclose closure:
 - Prolonged manual compression
 - Balloon tamponade
 - Stent implantation
 - Surgical repair

Conclusion:

- Vascular complications still happen as sheaths are still large
- The best treatment is prevention
- Adequate pre-procedure imaging to assess vessel size and calcification is critical
- Upcoming smaller profile devices (Sapien 3, CoreValve Evolut R) will help to reduce vascular complications
- Have equipment ready in the lab in case of vascular complications
- Be ready to consult surgical colleagues for assistance.

Thank you

paulchiam@heartvascularcentre.com

www.heartvascularcentre.com